Approximation of eigenvalues of differential equations with non-smooth coefficients

نویسنده

  • UDAY BANERJEE
چکیده

— The eigenvalues of second order, one dimensional, generahzed eigenvalue problem with non-smooth coefficients are approximated by using the j£f 2 Finite Element method This method was introduced in [4] in the context of approximation of the solution of differential équations with non-smooth coefficients In this paper, error estimâtes for eigenvalues as well as eigenvector s are denved Resumé — Les valeurs propres de second ordre, dans des problèmes de valeurs propres généralisés à une dimension avec des coefficients non réguliers, sont approximées par la méthode de 5£t-elements finis Cette méthode a été introduite dans [4], dans le contexte d'approximation des solutions, de certaines équations différentielles dont les coefficients étaient non réguliers Des estimations de l'erreur sur les valeurs propres aussi bien que celles sur les vecteurs propres sont obtenues dans cet article Subject Classification AMS (MOS) Pnmary 35P15, 65N15, 65N25, 65N30 Running Head Approximation of Eigenvalues

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation

In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...

متن کامل

Operational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients

In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...

متن کامل

Study on usage of Elzaki transform for the ordinary differential equations with non-constant ‎coefficients

Although Elzaki transform is stronger than Sumudu and Laplace transforms to solve the ordinary differential equations withnon-constant coefficients, but this method does not lead to finding the answer of some differential equations. In this paper, a method is introduced to find that a differential equation by Elzaki transform can be ‎solved?‎

متن کامل

Homotopy perturbation method for eigenvalues of non-definite Sturm-Liouville problem

In this paper, we consider the application of the homotopy perturbation method (HPM) to compute the eigenvalues of the Sturm-Liouville problem (SLP) which is called non-definite SLP. Two important Examples show that HPM is reliable method for computing the eigenvalues of SLP.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017